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Abstract

Modeling voices for multiple speakers and multiple languages
in one text-to-speech system has been a challenge for a long
time. This paper presents an extension on Tacotron2 to achieve
bilingual multispeaker speech synthesis when there are lim-
ited data for each language. We achieve cross-lingual synthe-
sis, including code-switching cases, between English and Man-
darin for monolingual speakers. The two languages share the
same phonemic representations for input, while the language
attribute and the speaker identity are independently controlled
by language tokens and speaker embeddings, respectively. In
addition, we investigate the model’s performance on the cross-
lingual synthesis, with and without a bilingual dataset during
training. With the bilingual dataset, not only can the model
generate high-fidelity speech for all speakers concerning the
language they speak, but also can generate accented, yet fluent
and intelligible speech for monolingual speakers regarding non-
native language. For example, the Mandarin speaker can speak
English fluently. Furthermore, the model trained with bilingual
dataset is robust for code-switching text-to-speech, as shown in
our results and provided samples.1.
Index Terms: Text-to-speech, cross-lingual text-to-speech,
multi-speaker text-to-speech

1. Introduction
Recently, the combination of an encoder-decoder based text-
to-spectrogram network and a neural vocoder has allowed ma-
chines to synthesize high-fidelity speech that is as natural as
human. This technique can well equip text-to-speech (TTS)
applications (e.g., audiobook reader, virtual assistants, naviga-
tion systems, etc.) in our daily life. However, these models,
like Tacotron2 [1], keep a certain level of limitations in con-
trollability regarding latent speech attributes. Thus the mod-
els’ robustness is limited and may be incapable of synthesizing
speech with various speech characteristics. Then extensions on
Tacotron2 have been proposed to address these problems: Yux-
uan Wang et al. modeled the latent speech attributes by global
style tokens (GSTs) while there are no explicit labels provided
[2]. Ye Jia et al. extend the Tacotron2 with conditioned features
extracted from a speaker verification system to achieve speaker
identity cloning and multispeaker TTS. [3].

However, as bilinguists and multilinguists are commonly
seen in today’s world, the speech communication scenario be-
comes complicated. It is essential for speech analysis tools, in-
cluding speech recognition and speech synthesis, to adapt this
change for maintaining their current performance. The chal-
lenge is that languages, mostly, have different grapheme set

1https://caizexin.github.io/mlms-syn-samples/index.html

and pronunciations between each other. This challenge moti-
vates researchers to find and investigate shared representations
between languages for speech analysis [4, 5, 6].

Even with appropriate representations for multiple lan-
guages, the model architecture needs to be upgraded in order
to achieve multilingual processing for all speech analysis sys-
tems. For TTS, approaches are proposed for multilingual syn-
thesis, even cross-lingual synthesis, based on classical statistical
parametric speech synthesis (SPSS) [7, 8]. Since the end-to-
end TTS models can generate speech with higher quality com-
pared with classical methods, extensions on the end-to-end TTS
frameworks also have been explored for multilingual modeling
[9, 10, 11, 12]. Normally, the voices of the multilingual TTS
training datasets are different. Therefore, most TTS multilin-
gual systems also support multispeaker synthesis. But the cross-
lingual synthesis, where we can generate speech with foreign
text for a monolingual speaker, is challenging. Yu Zhang et al.
had achieved high-quality cross-lingual synthesis in a sufficient-
data scenario [10]. Zhaoyu Liu et al. investigated cross-lingual
synthesis with limited data for each speaker, But the synthesized
speech has moderate quality due to the data sparsity issue [13].

Motivated by the aforementioned works, in this paper, our
focus is to achieve cross-lingual multispeaker TTS with lim-
ited data form two languages, English and Mandarin. We pro-
pose a model that incorporates speaker embedding and language
embedding as the conditioned features for multilingual multi-
speaker TTS. The proposed model can generate high-quality
speech for all speakers with respect to their own language. In
addition, we investigate cross-lingual synthesis with the same
model in a limited-data scenario by involving a bilingual TTS
dataset. Results show that language-related knowledge can be
transferred from the bilingual speaker to monolingual speakers,
which enables us to generate fluent, high-fidelity, and intelli-
gible speech in both Mandarin and English using monolingual
speakers’ voices.

2. Related works
Developing a multilingual multispeaker (MLMS) TTS model
can relief the efforts of training multiple TTS models used for
several voices with different languages. While the voice can be
controlled by a text-independent speaker embedding in a multi-
speaker TTS system [3, 14], TTS regarding multiple languages
is more complicated due to different grapheme representations
across languages. However, similar pronunciations between
different languages can help reduce the gap of cross-lingual
text-to-speech. Previously, Huaiping Ming et al. presents a
light-weighted bilingual synthesis system that adopts concate-
nated vectors in the linguistic-feature level to manage two lan-
guages in one model. [8] . Bo Li et al. proposed an MLMS TTS
approach based on conventional statistical parametric speech
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Figure 1: Proposed multilingual multispeaker TTS model

synthesis (SPSS) [7]. They used the international pronunci-
ation Alphabet (IPA) as the input representation and applied
cluster adaptive language networks for generating the language-
dependent linguistic features, followed by speaker-dependent
output layers for different voices.

Then in 2018, Bo Li et al. proposed a novel representation
for all languages [6]. The representation, called Bytes, allows
speech recognition models and speech synthesis models to man-
age multilingual processing. The performance of using Bytes in
TTS is conducted and evaluated by another group of researchers
[10]. Experimental results in [10] showed that phoneme inputs
can achieve better performance than Bytes when used as the in-
put for the MLMS TTS model. With sufficient training data
(more than 500 hours), their proposed model is able to achieve
cross-lingual synthesis with a high naturalness rate. The shared
phoneme input is one of the keys to the cross-lingual synthe-
sis, which is also stated in [9]. Similar pronunciations across
languages result in close linguistic embedding vectors.

Zhaoyu Liu et al. also used shared phoneme representa-
tion and extended the Tacotron2 by incorporating conditional
embeddings for MLMS TTS [13], which has a similar struc-
ture as our proposed model. However, we have the language-
dependent Tacotron encoder designed for allowing the TTS
model to synthesized code-switching text. Furthermore, we
investigate MLMS TTS with limited data for each language
and the performance in cross-lingual synthesis, while [13] in-
vestigate multilingual synthesis with limited data concerning
each speaker. Xuehao Zhou et al. present a novel method
to merge context information between languages by adopting
word embedding from a pre-trained language model. Neverthe-
less, The cross-lingual synthesized speech has moderate quality,
as shown in the figures from [11].

3. Method
3.1. Input representation

Code-switching is defined as more than one language occur-
ring in one sentence or between sentences, either orally or in

written form. With the world’s globalization, code-switching
patterns in speech become a common case in many countries
and regions. [15]. The language environment in the global-
ization inspires more and more bilinguists and multilinguists,
which motivates researchers to develop speech processing sys-
tems that can handle multilingual challenges. Furthermore,
code-switching corpora have been collected and released for re-
search related to speech communication in the recent decade
[16, 17], followed with various approaches proposed to address
complicated speech analysis, including multilingual automatic
speech recognition (ASR), language identification and language
diarization with respect to multilingual scenario [18, 19, 20, 21].
Likewise, TTS systems need to be improved for synthesizing
natural speech for code-switching sentences [11].

However, one of the main challenges of code-switching
TTS is that the grapheme set or the phoneme set between lan-
guages are different. Regarding that some phonetic pronunci-
ations between different languages are close. Thus exploring
a multilingual TTS model with minimum data requirement, in-
cluding textual and vocal data, is possible and essential. Previ-
ous approaches, which are proposed for addressing multilingual
issues in TTS, indicate that shared input representation across
languages is one of the keys to realize cross-lingual synthesis
[6, 7, 9]. The shared representations include shared phoneme
set, international pronunciation alphabet (IPA), and the Bytes
coding [6], where the phoneme representation can obtain better
performance [10].

In our work, we choose to use a shared phoneme set from
CMU dictionary [22] to investigate bilingual multispeaker TTS
and cross-lingual synthesis between Mandarin and English. As
for Mandarin, the pronunciation representation called pinyin
can be converted to CMU phoneme by the pinyin-to-cmu map-
ping table [23]. Since Mandarin is a tone-language, digits 1 to 6
are used to denote different tones, while ‘0’, ‘1’, ‘2’ are used to
mark the lexical stress for English. Although the tone and stress
share the same annotations in our input, which may cause am-
biguity, we have language identification tokens as another input
stream. Moreover, language identification tokens are used to



Table 1: Phonemes (without tone and stress) and their corresponding frequencies in LJ-Speech, DB-1 and DB-4

Phoneme LJS DB-1 DB-4 Phoneme LJS DB-1 DB-4 Phoneme LJS DB-1 DB-4
J 10088 12499 X 8050 11895 Q 5435 7489

IY 28587 54859 85601 EH 26397 3598 11791 AA 16976 11173 23205
L 32893 9420 23510 AY 12079 7479 15619 UW 15345 30630 44593

SH 7957 11456 17804 OW 10201 6921 13698 Y 4426 16540 27793
N 68392 33006 56359 T 65657 8698 26504 JH 4824 8994 13821

AE 21502 27640 42203 NG 7229 25895 36286 AH 102042 12558 33953
G 5901 6960 12298 AW 4248 9654 15397 Z 27845 5749 14135
M 23778 5967 14833 AO 16035 6970 14496 S 43700 5485 17965

UH 2856 7576 11253 W 20352 7151 15411 CH 4751 5118 7940
D 43601 14192 30390 ER 23525 15131 30264 B 15608 7577 15252
F 17018 4111 8890 R 40428 5025 16386 K 27866 3325 12650

HH 13785 7915 14745 EY 14695 4891 10838 P 20212 2496 8607
V 19628 4089 DH 29311 4716 IH 53904 11368

TH 3604 1250 OY 831 595 ZH 607 237
AX 156 418

generate language-dependent encoding features while preserv-
ing the shared information between languages, like close pro-
nunciations. Similarly, ‘0’, ‘1’, ‘2’ are used for language iden-
tification in our input representations, where ‘0’ represents the
corresponding phoneme or stress annotation is from English,
‘1’ is for Mandarin and ‘2’ for language-unrelated symbols like
punctuation marks. Take the phrase ‘speech合成.’ (speech syn-
thesis.) as an example, two input sequences are obtained after
the front-end text processing. One is the phoneme sequence ‘S
P IY 1 CH HH ER 2 CH AH 2 NG 2 .’, and the other is the cor-
responding language identification tokens ‘0 0 0 0 0 1 1 1 1 1 1
1 1 2’ which has the same length as the phoneme sequence. We
break up phonemes with its corresponding tones, e.g., ‘AH2’ is
converted to ‘AH 2’, to allow our proposed model to share close
pronunciations between Mandarin and English.

3.2. Proposed model

Our proposed bilingual multispeaker TTS model is illustrated
in figure 1. The input text is converted into phoneme sequence
and language token sequence, as introduced in section 3.1. The
phoneme sequence is converted to phoneme embedding se-
quence by a learnable lookup table. Correspondingly, the lan-
guage tokens are converted to a 64-dimensional language em-
bedding sequence through another learnable embedding table.
Two embedding sequences are concatenated together as the in-
put of the Tacotron encoder, which accumulates the linguistic
and context characteristics of the input vector sequence with
layers of convolutional layers and a bi-directional long short-
term memory (BLSTM) layer.

256-dimensional speaker embedding is concatenated with
the encoder outputs for conditioning the network to synthesize
expected voices. For the speaker embedding, we use the mean
embedding derived from all embeddings extracted with a pre-
trained speaker verification model [24] by feeding all training
utterances of each speaker. We believe that it can induce the
same performance as using a trainable lookup table yet costs
less training time. Mel-spectrogram is used as the predicted
acoustic feature in our bilingual multispeaker TTS model. Ac-
cordingly, we trained a neural vocoder, WaveRNN [25], for con-
verting the Mel-spectrogram back to audio signals.

4. Experiments
4.1. Datasets

Our experiments are conducted with three TTS datasets, in-
cluding the publicly available LJ Speech (LJS) dataset [26] and
two Chinese female voice datasets, DB-1 and DB-4, from Data
Baker 2 ( LJS, DB-1 and DB-4 are used as representations for
both speaker identity and dataset in this section). DB-1 is pub-
licly open, and DB-4 is a commercial one. LJS contains approx-
imately 24 hours of audio-transcript English pairs recorded by a
female English native speaker. The DB-1 has approximately 12
hours of Mandarin speech synthesis data recorded by a female
Mandarin native speaker. The DB-4 is a bilingual dataset, which
contains 12 hours of Chinese audio-transcript pairs, 6 hours of
English pairs and 6 hours of code-switching data with a female
Mandarin speaker.

Table 1 illustrates the frequencies of all phonemes in three
datasets. LJS contains only English utterances, while DB-1
only Chinese utterances. Three consonants, ‘J’, ‘X’, and ‘Q’
do not exist in the English dataset when using shared phoneme
representations. However, these three phonemes frequently ex-
ist in the Mandarin dataset. On the other hand, 7 phonemes
are not presented in the Mandarin dataset while frequently ex-
isted in the English dataset, as shown in the table. The bilin-
gual dataset DB-4 contains all phonemes. Most phonemes be-
tween two languages share the same representation in our ex-
periments. This indicates that the intersecting shared phonemes
may be less challenging to learn by a cross-lingual TTS system
compared to those phonemes that only exist in one language.
Moreover, the cross-lingual synthesis can be achieved when the
model catches the pronunciation similarity of these phonemes
between English and Mandarin.

4.2. Training setup

We trained two bilingual multispeaker TTS systems with dif-
ferent datasets. The first system, notated by BLMS, is the
bilingual multispeaker TTS model trained with DB-1 and LJS.
The other system, notated by CLMS, is the system trained
with all datasets, including the bi-lingual dataset DB-4. Al-
though the latter system also can be used for bilingual multi-
speaker synthesis, we focus on its capability of cross-lingual

2https://www.data-baker.com/us.html
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Figure 2: Attention alignments when synthesizing code-switching text ‘其实我很难判断 in my heart I think my Chinese is better but
people tell me that my English是比较好’ (Actually, it’s hard for me to tell. In my heart, I think my Chinese is better, but people tell me
that my English is better): (a) The alignment from BLLS with speaker DB-1; (b) The alignment from BLLS with speaker LJS; (c) The
alignment from CLMS with speaker DB-1; (d) The alignment obtained from CLMS with speaker LJS; (e) The alignment obtained from
CLMS with speaker DB-4;

Table 2: The naturalness mean opinion scores (MOS)

BLMS CLMS
Text type DB-1 LJS DB-1 LJS DB-4
Mandarin 4.08 3.07 3.94 3.10 4.11
English 3.48 3.87 3.74 4.08 3.97

Code-switching 3.53 3.18 3.83 3.27 3.99

Table 3: The speaker similarity mean opinion scores (MOS)

BLMS CLMS
Text type DB-1 LJS DB-1 LJS DB-4
Mandarin 4.43 3.53 4.46 3.31 4.37
English 3.61 4.04 4.18 4.20 4.17

Code-switching 3.81 3.52 4.28 3.38 4.22

synthesis here. All training audios are downsampled to 16
kHz. The vocoder WaveRNN is first pre-trained with the ground
truth spectrogram-audio pairs from all three datasets. Then we
finetune the pre-trained vocoder model with their ground truth
alignment spectrograms after TTS training for each system.

4.3. Objective evaluations

The objective evaluation is done by speech synthesis MOS-
scale rating, a categorical score from 1 to 5, with 0.5 increments.
We ask 16 native Mandarin speakers (all speakers are familiar
with English) to rate the synthesized speech concerning natu-
ralness, similarity, and intelligibility. The naturalness is related
to the quality of synthesized audios regardless of the content.
The speaker similarity score is to measure how close is the syn-
thesized voice to the expected speaker, while the intelligibility
evaluates the clarity level of the speech content. We have three
types of synthesized text for evaluating the performance, which
are Mandarin sentences, English sentences, and code-switching
sentences that contain both Mandarin and English content in
each sentence. Each type of text has 15 sentences.

The naturalness mean opinion scores (MOS) are shown in
table 2. As shown in the table, the quality of synthesized audios
reaches around 4.0, While the performance degrades when gen-
erating cross-lingual speech for monolingual speakers. For ex-
ample, DB-1 obtains MOS with 4.12 when synthesizing Man-
darin sentences but degrades to 3.64 for English sentences. As
shown in table 3, the speech synthesized by our proposed model
can well preserve the speaker identity according to the speaker
embedding. Most speaker similarity MOS are above 4, while
scores lower than 4 can be observed in cross-lingual cases.

Table 4: The intelligibility mean opinion scores (MOS)

BLMS CLMS
Text type DB-1 LJS DB-1 LJS DB-4

Mandarin 4.76 1.90 4.72 3.53 4.81
English 1.25 4.01 3.86 4.56 4.47

Code-switching 2.60 2.34 4.18 3.84 4.59

The code-switching performance can be clearly observed
from table 4. Although BLMS can achieve bilingual multi-
speaker synthesis, the cross-lingual synthesis performance is
poor, which matches the result in [10]. The cross-lingual syn-
thesized speech is unintelligible as the intelligibility MOS are
below 2. However, while involving a bilingual dataset, CLMS
is able to generate cross-lingual speech, even in code-switching
cases, with intelligible pronunciations. Raters said that the syn-
thesized speech is exactly like a foreign speaker speak another
language with the accent from their native language. This indi-
cates that, with our proposed model, using a bilingual dataset
can significantly improve cross-lingual speech synthesis, al-
though we only have limited data for each language.

4.4. Alignments

In addition, the cross-lingual synthesis performance also can be
seen from the attention alignments in Figure 2. The synthe-
sized content is a code-switching sentence. For system BLMS,
we can observe clear breaks when the language switches in
the sentence for monolingual speakers DB-1 and DB-4 in fig-
ure 2 (a) and (b). However, the attention alignments obtained
from CLMS are smooth even for monolingual speakers. This
also implies that language-related knowledge can be transferred
from the bilingual speaker to monolingual speakers with our
proposed model.

5. Conclusion
We present a bilingual multispeaker TTS approach based on
shared phonemic representations. Our proposed model is able
to achieve high-fidelity bilingual multispeaker TTS. In addition,
results show that, by involving a bilingual dataset, the model is
capable of cross-lingual synthesis, even for code-switching syn-
thesis, under the limited-data scenario. We are able to obtain
fluent, accented, and intelligible cross-lingual speech as mono-
lingual speakers speak a foreign language.
Acknowledgments This research is funded in part by the National Nat-
ural Science Foundation of China (61773413) and Duke Kunshan Uni-
versity.
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